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Synthesis, Powder Data, Infrared and Raman Spectra
of N;H;Ln(S0O,),-H,0 (Ln = La—Tb, except Pm)

NATASA BUKOVEC* and SVETOZAR MILICEV

Department of Chemistry, Edvard Kardelj University,
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{Received November 10, 1986)

The lanthanides form a variety of double sulphates
with formula M'Ln™!(S0,),-xH,0. We have re-
ported recently the synthesis, thermal decomposition
[1] and crystal structure [2] of a new compound
N,HsNd(SO4),-H,0. We now report the syntheses,
unit cell dimensions (determined from powder data)
and assignments of infrared and Raman spectra for
the family of eight compounds of the lanthanide
elements (from La to Tb, with the exception of Pm)
of the same composition.

Experimental

The compounds were prepared as described else-
where [1]. X-ray powder data were collected by a
Philips diffractometer (Cu Ka radiation) using silicon
(@=15.431065 A) [3] as an internal standard. Unit
cell dimensions were refined by a least-squares
program (SOS2) [4].

*Author to whom correspondence should be addressed.

ir.
o
Q
<
2
:
[
i
] Raman
> /\/J\,/
5
L1 1 1t 1) 1 1 1 1 1 1 i 1

L25

The infrared spectra were taken as nujol and per-
fluorobutadiene mulls on a Perkin-Elmer 521 spectro-
photometer in the 250—4000 cm™ ' region. Raman
spectra were obtained with a SPEX-1401 double
monochromator at the Department for Fluorine
Chemistry of the JoZef Stefan Institute. They were
excited by the 5145 A line of a Spectraphysics Ar*
ion laser, model CR-3, in back-scattering geometry.

Results and Discussion

The compounds N,;HsLn(SO4),*H,O (Ln=la,
Ce, Pr, Sm, Eu, Gd, and Tb) are isomorphous with
N,HsNd(SO4),-H,0 [2] (Table I). We may reason-
ably conclude that in the new compounds the
lanthanide atom is likewise nine-coordinated with
seven O-atoms of the sulphate ions, one water mole-

TABLE 1. Unit Cell Dimensions of N;HsLn(S04);-H,0
(Ln = La—-Tb except Pm) from X-ray Powder Data

Ln a (A) b (&) ¢ (&) V(a3
La 11.050(1) 9.585(2) 15.874(4) 1680.0
Ce 11.023(2) 9.568(1) 15.817(2) 1668.2
Pr 10.956(4) 9.567(4) 15.786(3) 1654.6
Nd2 10.960(3) 9.561(4) 15.764(6) 1651.9
Sm 10.859(2) 9.510(2) 15.678(2) 1619.1
Eu 10.821(2) 9.509(2) 15.684(3) 1613.8
Gd 10.769(1) 9.505(2) 15.645(2) 1601.4
Tb 10.738(1) 9.538(2) 15.642(3) 1602.0

2(Cell dimensions from monocrystal data [2].
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Fig. 1. Representative spectra of the series. Infrared spectra (nujol and perfluorobutadiene mulls) and Raman spectrum of

N2H5CC(SO4)2 . H20.
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lattice vibrations

164(6)

173(1)

170(1)

152(3)

150(3)

148(2)

149(2)

137(1)

135(1)

133(2)

135(1)

rocking, s = stretching,

very. b4 = deformation,

= weak, sh = shoulder, and v

medium, w

aRaman intensities are given in parentheses. Infrared intensities: s = strong, m

wagging.

t = torsion, w
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cule and one nitrogen atom of the N,Hs* ion. The
S04% ions, NyHs* ions and H, O molecules are linked
by a system of O—H--+0 and N—H---0 hydrogen
bonds. We ascribe the continuous decrease of the cell
dimensions from the lanthanum to terbium com-
pound to the lanthanide contraction. The compounds
have almost identical vibrational spectra (Table II,
Fig. 1). All the components are coordinated to the
lanthanide ion, so the slight increase (5—-10 cm™}!) in
almost all the bands should also be assigned to the
contraction. There are eight formula units in the
orthorhombic primitive cell (space group Pca2,, C,,,
No 29, with all atoms in general positions [2]).
Factor group analysis predicts 288 internal modes
uniformly divided into 72 Ay, 72 A,, 72 By and 72
B, symmetry species. A, vibrations are inactive in the
infrared spectra, and all of them are active in the
Raman spectra.

Bands assigned to the vibrations of the SO42~ ions
are easily identified by comparison with the literature
data (see for instance ref. S). The v, vibration is
observed as a very weak absorption in the infrared,
although it should gain activity because of the lower
site symmetry [6]. The explanation might be a weak
static field, which is in accord with the crystalio-
graphically observed insignificant deformation of the
S04~ ion [2]. Numerous split bands are obviously
caused by the correlation field. Weak hydrogen
bonding demonstrated by the spectra both in the OH
and NH stretching regions is also in accord with the
suggested weak static field. Correlation between O—H
or N—H stretching frequencies and O—0 [7] or N-O
[8] distances almost exactly reproduce the X-ray data
(O—0 distances from the spectra are about 2.79 A
and N—O distances between 2.77 and 2.97 A). These
values are just under the van der Waals distances [9],
confirming the very weak interactions.

Of the two strong bands in the Raman spectra
(1015 cm™! and 1002 ¢cm™ '), which appear on the
slope of the v3(S04*7) absorption in the infrared
spectra as weak to very weak bands, we assign the
stronger one to the symmetric breathing of the
isotropic sulphate ion, and the weaker one to the
N—N stretching of the asymmetric N,Hs* ion. The
frequency of the N—N mode is unusually high,
indicating coordinated N,Hs* ions [10]. This is con-
firmed by X-ray data [2], which give the Nd—N
distance as 2.79 A (the van der Waals radius of N is
1.55 A and that of Nd should be larger than its
Bragg—Slater radius, which is 1.85 A [11]). Deforma-
tion and rocking modes of the N,Hs* ion are assigned
in accordance with the literature [12] and the
references cited therein. Rocking bands of the NH;*
group, except the one in the Raman spectra, are
hidden by the split v; mode of the SO,%~ jon. The
torsion frequency of the NyHs* ion (495 cm™) is in
accord with the weak hydrogen bond (compare the
corresponding bands in NyHgF at 568 and 638 cm ™!
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with stronger hydrogen bonding [13]). We could not
identify any Nd-N stretching band. Some of the
bands of coordinated water are tentatively assigned,
mostly in accordance with ref. 14,

Conclusion

Powder diffraction data and vibrational spectra
demonstrate the isomorphism of a series of ortho-
rthombic hydrazinium(1+) lanthanide sulphates.
Vibrational spectra, which are characteristic of the
coordinated hydrazinium(1+) ion, manifest very weak
hydrogen bonding. They indicate negligible deforma-
tions of the sulphate ions and also coupling of
vibrations within the unit cell.
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